

Stability of Linear Systems

- Stability will be defined in terms of ODE's and $O\Delta E$'s
 - ODE: Couples System

$$\frac{d\vec{u}}{dt} = A \vec{u} - \vec{f}(t) \tag{1}$$

- $O\Delta E$: Matrix form from applying Eq. 1

$$\vec{u}_{n+1} = C \vec{u}_n - \vec{g}_n \tag{2}$$

- For Example: Euler Explicit C = [I - hA]

Inherent Stability of ODE's

- Stability of Eq. 1 depends entirely on the eigensystem of A.
- λ_m -spectrum of A: function of finite-difference scheme, BC

For a stationary matrix A, Eq. 1 is inherently stable if, when \vec{f} is constant, \vec{u} remains bounded as $t \to \infty$.

(3)

• Note that inherent stability depends only on the transient solution of the ODE's.

$$\vec{u}(t) = c_1 \left(e^{\lambda_1 h}\right)^n \vec{x}_1 + \dots + c_m \left(e^{\lambda_m h}\right)^n \vec{x}_m + \dots + c_M \left(e^{\lambda_M h}\right)^n \vec{x}_M + P.S.$$

$$(4)$$

• ODE's are inherently stable if and only if

$$\Re(\lambda_m) \le 0 \quad \text{for all} \quad m \tag{5}$$

- For inherent stability, all of the λ eigenvalues must lie on, or to the left of, the imaginary axis in the complex λ plane.
- This criterion is satisfied for the model ODE's representing both diffusion and biconvection.

Numerical Stability of $O\Delta E$'s

- Stability of Eq. 2 related to the eigensystem of its matrix, C.
- σ_m -spectrum of C: determined by the $O\Delta E$ and are a function of λ_m

$$\vec{u}_n = c_1(\sigma_1)^n \vec{x}_1 + \dots + c_m(\sigma_m)^n \vec{x}_m + \dots + c_M(\sigma_M)^n \vec{x}_M + P.S.$$
 (6)

- Spurious roots play a similar role in stability.
- The $O\Delta E$ companion to Statement 3 is

For a stationary matrix
$$C$$
, Eq. 2 is numerically stable if, when \vec{g} is constant, \vec{u}_n remains bounded as $n \to \infty$. (7)

- Definition of stability: referred to as asymptotic or time stability.
- Time-marching method is numerically stable if and only if

$$\left| \left| \left(\sigma_m \right)_k \right| \le 1 \quad \text{for all } m \text{ and } k \right|$$
 (8)

- This condition states that, for numerical stability, all of the σ eigenvalues (both principal and spurious, if there are any) must lie on or inside the unit circle in the complex σ -plane.
- This definition of stability for $O\Delta E$'s is consistent with the stability definition for ODE's.

Review

- Our Approach leads to
 - The PDE's are converted to ODE's by approximating the space derivatives on a finite mesh.
 - Inherent stability of the ODE's is established by guaranteeing that $\Re(\lambda) \leq 0$.
 - Time-march methods are developed which guarantee that $|\sigma(\lambda h)| \leq 1$ and this is taken to be the condition for numerical stability.

Time-Space Stability and Convergence of $O\Delta E$'s

- A more classical view (but consistent) in the time-space sense.
 - The homogeneous part of Eq. 2, $\vec{u}_{n+1} = C\vec{u}_n$
 - Applying simple recursion $\vec{u}_n = C^n \vec{u}_0$
 - Using vector and matrix p-norms

$$||\vec{u}_n|| = ||\mathbf{C}^n \vec{u}_0|| \le ||\mathbf{C}^n|| \cdot ||\vec{u}_0|| \le ||\mathbf{C}||^n \cdot ||\vec{u}_0|| \tag{9}$$

- Assume that the initial data vector is bounded, the solution vector is bounded if

$$||C|| \le 1 \tag{10}$$

where ||C|| represents any p-norm of C.

- This is often used as a *sufficient* condition for stability.
- Well known relation between spectral radii and matrix norms
 - * The spectral radius of a matrix is its L_2 norm when the matrix is normal, i.e., it commutes with its transpose.
 - * The spectral radius is the *lower bound* of all norms.
- The matrix norm approach and the $\sigma \lambda$ analysis are consistent when both A and C have a complete eigensystem.

Numerical Stability Concepts: Complex σ -Plane

- σ -Root Traces Relative to the Unit Circle
- The $O\Delta E$ solution to the homogeneous part

$$\vec{u}_n = c_1 \sigma_1^n \vec{x}_1 + \dots + c_m \sigma_m^n \vec{x}_m + \dots + c_M \sigma_M^n \vec{x}_M$$

- Semi-discrete approach leads to a relation between the σ and the λ eigenvalues.
- Numerical stability of the $O\Delta E$ requires that σ -roots lie within unit circle in the complex σ -plane.
- Trace the locus of the σ -roots as a function of the parameter λh

Stability in the Complex- σ Plane

- Define $\sigma_{exact} = e^{\lambda h}$ and Separate:
 - Dissipation $(\lambda h = \beta < 0)$ Convection $(\lambda h = i\omega)$
- Plot $Real(\sigma)$ and $Imag(\sigma)$ for varying λh of both types.

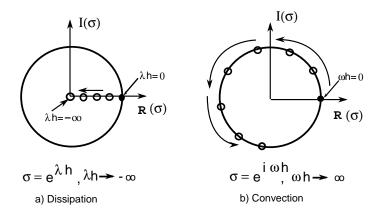


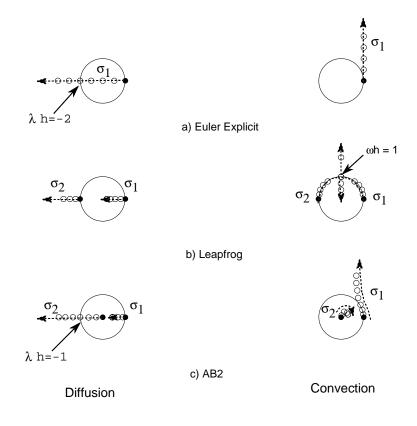
Figure 1: Exact traces of σ -roots for model equations.

$\sigma - \lambda$ Relations for Various Schemes

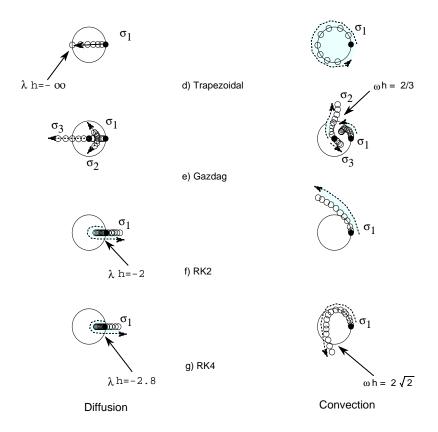
1.
$$\sigma - 1 - \lambda h = 0$$
 Explicit Euler 2. $\sigma^2 - 2\lambda h \sigma - 1 = 0$ Leapfrog 3. $\sigma^2 - (1 + \frac{3}{2}\lambda h)\sigma + \frac{1}{2}\lambda h = 0$ AB2 4. $\sigma^3 - (1 + \frac{23}{22}\lambda h)\sigma^2 + \frac{16}{12}\lambda h\sigma - \frac{5}{12}\lambda h = 0$ AB3 5. $\sigma^{(1 - \lambda h)} - 1 = 0$ Implicit Euler 6. $\sigma(1 - \frac{1}{2}\lambda h) - (1 + \frac{1}{2}\lambda h) = 0$ Trapezoidal 7. $\sigma^2(1 - \frac{2}{3}\lambda h) - \frac{4}{3}\sigma + \frac{1}{3} = 0$ 2nd-Order Backward 8. $\sigma^2(1 - \frac{5}{12}\lambda h) - (1 + \frac{8}{12}\lambda h)\sigma + \frac{1}{12}\lambda h = 0$ AM3 9. $\sigma^2 - (1 + \frac{13}{12}\lambda h + \frac{15}{24}\lambda^2 h^2)\sigma + \frac{1}{12}\lambda h(1 + \frac{5}{2}\lambda h) = 0$ ABM3 10. $\sigma^3 - (1 + 2\lambda h)\sigma^2 + \frac{3}{2}\lambda h\sigma - \frac{1}{2}\lambda h = 0$ Gazdag 11. $\sigma - 1 - \lambda h - \frac{1}{2}\lambda^2 h^2 = 0$ RK2 12. $\sigma - 1 - \lambda h - \frac{1}{2}\lambda^2 h^2 - \frac{1}{6}\lambda^3 h^3 - \frac{1}{24}\lambda^4 h^4 = 0$ RK4 13. $\sigma^2(1 - \frac{1}{3}\lambda h) - \frac{4}{3}\lambda h\sigma - (1 + \frac{1}{3}\lambda h) = 0$ Milne 4th

Table 7.1. Some $\lambda - \sigma$ Relations

Traces of σ -roots for various methods.



Traces of σ -roots for various methods.



Types of Stability

- Conditional Stability: Explicit Methods
 - $O\Delta E$'s where $\lambda h \leq Constant$
 - λ spectrum, e.g. $\lambda_b h = -\frac{ah}{\Delta x}(1 \cos(k\Delta x) + i\sin(k\Delta x))$
 - Given Δx , wave speed a, and difference scheme: λ fixed
 - Adjust $h = \Delta t$ to satisfy stability bound
 - Time accuracy: use an appropriate h
 - Mildly-unstable: Prof. Milton VanDyke
 Lock bike fork and peddle as fast as you can, you may cross the street before you fall over and a truck hits you.

• Un-Conditional Stability: Implicit Methods

A numerical method is *unconditionally stable* if it is stable for all ODE's that are inherently stable.

- $O\Delta E$'s where $\lambda h \to \infty$ is stable
- Time accuracy: use an appropriate h
- Steady-State: any h which converges fast.
- Computationally expensive compared with Explicit Methods

Stability Contours in the Complex λh Plane.

- Another view of stability properties of a time-marching method is to plot the locus of the complex λh for which $|\sigma| = 1$
- $|\sigma|$ refers to the maximum absolute value of any σ , principal or spurious, that is a root to the characteristic polynomial for a given λh .
- Inherently stable ODE's lies in the left half complex-sigma plane

Example for Euler Explicit

- Euler explicit: $\sigma_{ee} = 1 + h\lambda$
 - Wave equation: central differencing, $\lambda_c = -ai\frac{\sin(k\Delta x)}{\Delta x}$

$$\sigma_{ee} = 1 - \frac{ah}{\Delta x} isin(k\Delta x)$$

- $-|\sigma_{ee}| > 1.0$ for all h, unconditionally unstable
- Wave equation: 1^{st} order backward differencing, $\lambda_b h = -\frac{ah}{\Delta x}(1 \cos(k\Delta x) + i\sin(k\Delta x))$
 - $|\sigma_{ee}| \le 1.0$ for all some h, conditionally stable
 - Note: $CFL = \frac{ah}{\Delta x}$, CFL Number

- Complex λ -plane, Euler explcit, $\sigma_{ee} = 1 + \lambda h$
 - Let $\lambda h = x + iy$, then $\sigma_{ee} = 1 + x + iy$

$$|\sigma_{ee}| = \sqrt{(1+x)^2 + y^2}$$

- Contour of $|\sigma_{ee}| = 0.8$ leads to $(1+x)^2 + y^2 = (0.8)^2$: circle in x, y centered at x = -1 with radius 0.8, **Stable**
- Contour of $|\sigma_{ee}| = 1.2$ leads to $(1+x)^2 + y^2 = (1.2)^2$; circle in x, y centered at x = -1 with radius 1.2, **Un-Stable**

Example for Euler Implicit

- Euler implicit: $\sigma_{ei} = \frac{1}{1-\lambda h}$
 - Wave equation: central differencing, $\lambda_c = -ai\frac{\sin(k\Delta x)}{\Delta x}$

$$\sigma_{ei} = \frac{1}{1 + \frac{ah}{\Delta x} i sin(k\Delta x)}$$

- $|\sigma_{ei}| < 1.0$ for all h, unconditionally stable
- Even for Compex λh : unconditional stability

- Complex λ -plane, Euler Impleit, $\sigma_{ei} = \frac{1}{1-\lambda h}$
 - Let $\lambda h = x + iy$, then $\sigma_{ei} = \frac{1}{1 x iy}$

$$|\sigma_{ei}| = \frac{1}{\sqrt{(1-x)^2 + y^2}}$$

- Contour of $|\sigma_{ei}| = 0.8$ leads to $(1-x)^2 + y^2 = (\frac{1}{0.8})^2$: circle in x, y centered at x = 1 with radius $\frac{1}{0.8}$, **Stable**
- Contour of $|\sigma_{ei}| = 1.2$ leads to $(1-x)^2 + y^2 = (\frac{1}{1.2})^2$: circle in x, y centered at x = 1 with radius $\frac{1}{1.2} < 1.0$, Un-Stable
- The unstable contours are in the right half of the inherent stable of the ODE's

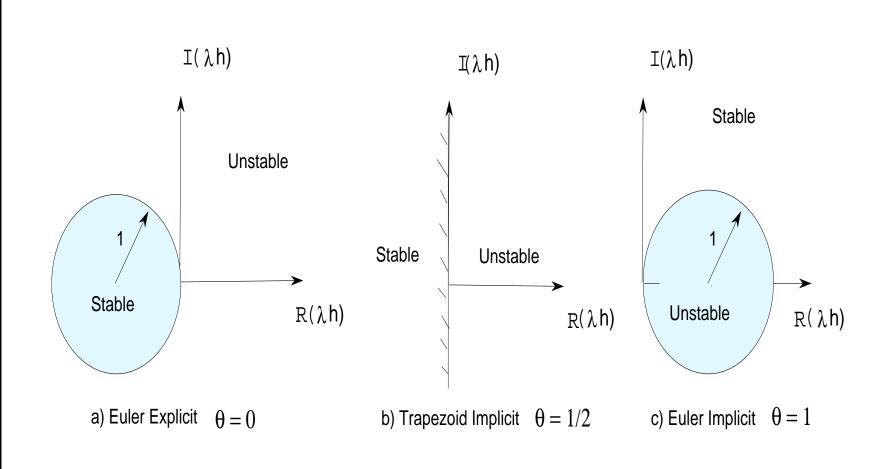
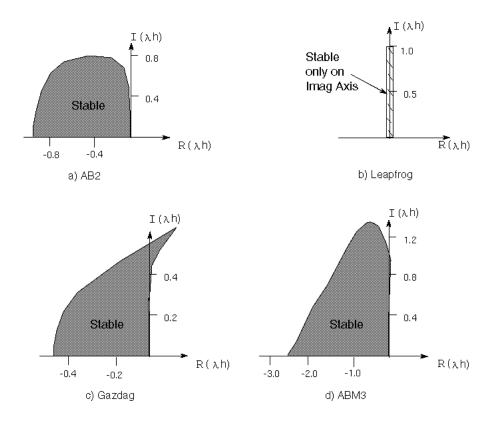
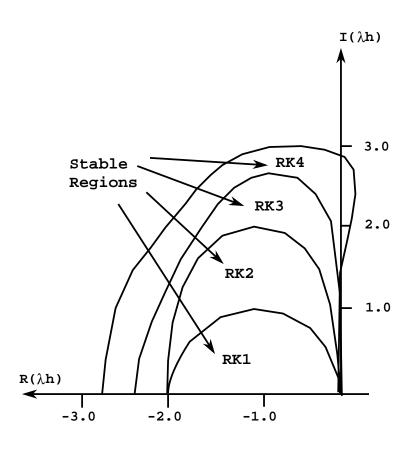


Figure 2: Stability contours for the θ -method.

Stability contours for some explicit methods.



Stability contours for Runge-Kutta methods.



Fourier Stability Analysis

- Classical stability analysis for numerical schemes
- Fourier or von Neumann approach.
 - Periodic in space derivative, similar to modified wave number
 - Usually carried out on point operators
 - Does not depend on an intermediate stage of ODE's.
- Strictly speaking it applies only to difference approximations of PDE's that produce $O\Delta E$'s
- Serves as a fairly reliable *necessary* stability condition, but it is by no means a *sufficient* one.

The Basic Procedure

- Impose a spatial harmonic as an initial value on the mesh
- Will its amplitude grow or decay in time?
- Determined by finding the conditions under which

$$u(x,t) = e^{\alpha t} \cdot e^{i\kappa x} \tag{11}$$

- Is a solution to the difference equation, where κ is real and $\kappa \Delta x$ lies in the range $0 \le \kappa \Delta x \le \pi$.
- For the general term,

$$u_{j+m}^{(n+\ell)} = e^{\alpha(t+\ell\Delta t)} \cdot e^{i\kappa(x+m\Delta x)} = e^{\alpha\ell\Delta t} \cdot e^{i\kappa m\Delta x} \cdot u_j^{(n)}$$

• $u_j^{(n)}$ is common to every term and can be factored out.

• Find the term $e^{\alpha \Delta t}$, which we represent by σ , thus:

$$\sigma \equiv e^{\alpha \Delta t}$$

• Since $e^{\alpha t} = (e^{\alpha \Delta t})^n = \sigma^n$

For numerical stability
$$|\sigma| \le 1$$
 (12)

- Solve for the σ 's produced by any given method
- A necessary condition for stability, make sure that, in the worst possible combination of parameters, condition 12 is satisfied.

Example 1

- Finite-difference approximation to the model diffusion equation
- Richardson's method of overlapping steps.

$$u_j^{(n+1)} = u_j^{(n-1)} + \nu \frac{2\Delta t}{\Delta x^2} \left(u_{j+1}^{(n)} - 2u_j^{(n)} + u_{j-1}^{(n)} \right)$$
 (13)

- Substitution of Eq. 11 into Eq. 13

$$\sigma = \sigma^{-1} + \nu \frac{2\Delta t}{\Delta x^2} \left(e^{i\kappa \Delta x} - 2 + e^{-i\kappa \Delta x} \right)$$

or

$$\sigma^{2} + \underbrace{\left[\frac{4\nu\Delta t}{\Delta x^{2}}(1 - \cos\kappa\Delta x)\right]}_{2b}\sigma - 1 = 0 \tag{14}$$

- Eq. 11 is a solution of Eq. 13 if σ is a root of Eq. 14.

- The two roots of Eq. 14 are

$$\sigma_{1,2} = -b \pm \sqrt{b^2 + 1}$$

- One $|\sigma|$ is always > 1.
- Therefore, that by the Fourier stability test, Richardson's method of overlapping steps is unstable for all ν , κ and Δt .

Example 2

• Finite-difference approximation for the model biconvection equation

$$u_j^{(n+1)} = u_j^{(n)} - \frac{a\Delta t}{2\Delta x} \left(u_{j+1}^{(n)} - u_{j-1}^{(n)} \right)$$

$$\sigma = 1 - \frac{a\Delta t}{\Delta x} \cdot i \cdot \sin \kappa \Delta x$$
(15)

- $|\sigma| > 1$ for all nonzero a and κ .
- Thus we have another finite-difference approximation that, by the Fourier stability test, is unstable for any choice of the free parameters.